Перевод: со всех языков на все языки

со всех языков на все языки

метод максимизации

  • 1 метод максимизации

    Banks. Exchanges. Accounting. (Russian-English) > метод максимизации

  • 2 метод

    method; (способ, манера) manner, mode, way, means; (подход) approach; (процедура, порядок) procedure

    Banks. Exchanges. Accounting. (Russian-English) > метод

  • 3 метод максимального правдоподобия

    1. maximum likelihood technique
    2. maximum likelihood method

     

    метод максимального правдоподобия

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод максимального правдоподобия
    В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих выборку). Применяется при оценивании параметров эконометрических моделей. Другое название: метод наибольшего правдоподобия.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > метод максимального правдоподобия

  • 4 метод ветвей и границ

    Разработан в 1963 году для решения задачи коммивояжера, связанной с выбором его маршрута от базы через несколько мест с возвращением на базу при минимальном расстоянии или времени. — This method was developed in 1963 for solving the traveling salesman problem, which involves the routing of a salesman from a base through several locations and back to the base, in minimum distance or time.

    Методы исследования операций и программирования дают научные критерии для максимизации прибыли, минимизации затрат и выбора наиболее выгодной комбинации продуктов. — The methods of operations research and programming provide scientific criteria for maximizing profit, minimizing cost, and selecting the most profitable combination of products.

    Russian-English Dictionary "Microeconomics" > метод ветвей и границ

  • 5 maximization technique

    Англо-русский экономический словарь > maximization technique

  • 6 maximum likelihood method

    1. метод максимального правдоподобия

     

    метод максимального правдоподобия

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод максимального правдоподобия
    В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих выборку). Применяется при оценивании параметров эконометрических моделей. Другое название: метод наибольшего правдоподобия.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > maximum likelihood method

  • 7 maximum likelihood technique

    1. метод максимального правдоподобия

     

    метод максимального правдоподобия

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод максимального правдоподобия
    В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих выборку). Применяется при оценивании параметров эконометрических моделей. Другое название: метод наибольшего правдоподобия.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > maximum likelihood technique

  • 8 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 9 linear programming

    1. линейное программирование

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > linear programming

  • 10 градиентные методы решения задач математического программирования

    1. gradient methods

     

    градиентные методы решения задач математического программирования
    Методы (вычислительные алгоритмы), основанные на поиске экстремума (максимума или минимума) функции путем последовательного перехода к нему с помощью градиента этой функции. В случае поиска минимума функции говорят о методе наискорейшего спуска, в случае задачи максимизации — о методе наискорейшего роста (или подъема). При этом необходима строгая проверка решения, ибо градиентный спуск или подъем могут привести к экстремальной точке, которая на самом деле окажется не глобальным, а лишь одним из локальных оптимумов. Формально решение в случае «спуска» состоит в построении последовательности векторов x0, x1,…, xn, удовлетворяющих условию f(x0)>f(x2)>…>f(xn). Такие последовательности называют релаксационными. Точки этой последовательности [xk] вычисляются по формуле xk+1 = xk+gkpk, где gk — направление спуска, определяемого градиентом, pk — длина шага вдоль этого направления; длина шага может быть постоянной и переменной, причем оптимальный ее размер обеспечивает наискорейший спуск (или подъем). Среди градиентных алгоритмов: метод растяжения пространства, субградиентный метод выпуклой оптимизации, метод покоординатного спуска.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > градиентные методы решения задач математического программирования

  • 11 gradient methods

    1. градиентные методы решения задач математического программирования

     

    градиентные методы решения задач математического программирования
    Методы (вычислительные алгоритмы), основанные на поиске экстремума (максимума или минимума) функции путем последовательного перехода к нему с помощью градиента этой функции. В случае поиска минимума функции говорят о методе наискорейшего спуска, в случае задачи максимизации — о методе наискорейшего роста (или подъема). При этом необходима строгая проверка решения, ибо градиентный спуск или подъем могут привести к экстремальной точке, которая на самом деле окажется не глобальным, а лишь одним из локальных оптимумов. Формально решение в случае «спуска» состоит в построении последовательности векторов x0, x1,…, xn, удовлетворяющих условию f(x0)>f(x2)>…>f(xn). Такие последовательности называют релаксационными. Точки этой последовательности [xk] вычисляются по формуле xk+1 = xk+gkpk, где gk — направление спуска, определяемого градиентом, pk — длина шага вдоль этого направления; длина шага может быть постоянной и переменной, причем оптимальный ее размер обеспечивает наискорейший спуск (или подъем). Среди градиентных алгоритмов: метод растяжения пространства, субградиентный метод выпуклой оптимизации, метод покоординатного спуска.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > gradient methods

  • 12 method of maximum likelyhood

    method of maximum likelyhood метод максимального правдоподобия, метод оценки, зависящий от максимизации логарифма функции правдоподобия (стат.)

    English-Russian dictionary of biology and biotechnology > method of maximum likelyhood

  • 13 LINEAR PROGRAMMING

    Линейное программирование
    Математический метод решения проблемы использования ограниченных ресурсов для достижения желаемой цели (например минимальных издержек и максимальной прибыли) при наличии совокупности ограничений.             Рассмотрим случай, когда фирма производит только два товара: книжные шкафы и стулья, и ей необходимо решить, какой объем каждого товара производить. Обратимся к графику. Объем производства компании ограничен имеющимися у нее производственными ресурсами. Если компания располагает только 80 часами машинного времени, а на производство одного шкафа требуется 5 часов и столько же на производство одного стула, тогда максимальный выпуск продукции будет равен отрезку XY. Если фирма располагает только 84 человеко-часами, а на производство каждого шкафа затрачивается 7 часов и каждого стула - 3 часа, тогда максимальный объем производства будет соответствовать отрезку RT. Область OXZT покрывает все возможные сочетания шкафов и стульев, которые можно произвести с учетом ограниченного машинного времени и человеко-часов (область допустимых решений (feasible region)). Если каждый шкаф (b) приносит прибыль в Ј5, а каждый стул (с) - Ј4, тогда для максимизации прибыли фирма будет стремиться максимизировать объем производства: 5b 4с. Чтобы получить прибыль в Ј60, фирма может производить 12 шкафов и 15 стульев или какое-то иное сочетание обоих товаров (на графике это пунктирная линия MT). Если фирма стремится увеличить свою прибыль, она будет производить больше шкафов и стульев, что соответствует линии LN, которая параллельна линии MT, но расположена дальше от начала координат. Линия LN показывает наибольшую прибыль, которую фирма может получить с учетом имеющихся у нее ресурсов, т.к. это максимально удаленная от начала координат линия в пределах области допустимых решений. Следовательно, фирма, чтобы максимизировать свою прибыль, остановится в точке Z и будет производить в неделю OV стульев и OW шкафов. См. Production possibility boundary.  

    Новый англо-русский словарь-справочник. Экономика. > LINEAR PROGRAMMING

  • 14 MARGINAL-COST PRICING

    Ценообразование на основе предельных издержек
    1. Метод определения цены на основе валовой прибыли (см. Contribution). Выручка на единицу продукции, умноженная на количество  проданного/произведенного  товара  составляет  валовую прибыль, которая необходима для покрытия постоянных издержек  ( сохранения рентабельности) или постоянных издержек и плановой прибыли. Для расчета цены продажи к величине переменных/ предельных издержек на единицу продукции прибавляется валовая прибыль. Ср.: Full-cost pricing.  2. Принцип ценообразования, обосновывающий целесообразность установления цены на уровне предельных издержек. Конъюнктура рынка совершенной конкуренции гарантирует установление цены на основе этого принципа, т.к. средний и предельный доход равны. В условиях несовершенной конкуренции, однако, когда цена равняется предельным издержкам, невозможно добиться максимизации прибыли, поскольку средний доход всегда превышает предельный доход. Принцип ценообразования на основе предельных издержек рекомендуется использовать на национализированных предприятиях в государственном секторе экономики, т.к. только он дает возможность максимизировать экономическое благосостяние общества (см. Public utilities). Рассмотрим график. В отраслях с убывающими издержками, когда предельные издержки  МС  ниже  средних  общих  издержек ATC,  установление цены, равной предельным издержкам, приводит к потерям, которые приходится компенсировать за счет налогов и других источников (цена OP1). В отраслях с возрастающими издержками, когда предельные издержки выше средних общих издержек, ценообразование на основе предельных издержек приводит к образованию избытка (цена OP2). См. также Average-cost pricing, Two-part tariff.  

    Новый англо-русский словарь-справочник. Экономика. > MARGINAL-COST PRICING

  • 15 оптимум

    1. optimum, optimality

     

    оптимум
    оптимальность

    С точки зрения математики, оптимум функции есть такое ее экстремальное значение (см. Экстремум функции), которое больше других значений той же функции — тогда это глобальный или, лучше, абсолютный максимум, или меньше других значений — тогда это глобальный (абсолютный) минимум. Если трактовать наибольшее или наименьшее значение каких-то экономических характеристик как наилучшее (в том или ином смысле), то мы придем к фундаментальным понятиям экономико-математических методов — понятиям оптимума и оптимальности. Термин «оптимум» употребляется по меньшей мере в трех значениях: 1) наилучший вариант из возможных состояний системы — его ищут, «решая задачи на О.»; 2) наилучшее направление изменений (поведения) системы («выйти на О.»); 3) цель развития, когда говорят о «достижении О.». Термин «оптимальность», «оптимальный» означает характеристику качества принимаемых решений (оптимальное решение задачи, оптимальный план, оптимальное управление), характеристику состояния системы или ее поведения (оптимальная траектория, оптимальное распределение ресурсов, оптимальное функционирование системы) и т.п. Это не абсолютные понятия: нельзя говорить об оптимальности вообще, вне условий и без точно определенных критериев оптимальности. Решение, наилучшее в одних условиях и с точки зрения одного критерия, может оказаться далеко не лучшим в других условиях и по другому критерию. К тому же следует оговориться, что в реальной экономике, поскольку она носит вероятностный характер, оптимальное решение на самом деле не обязательно наилучшее. Приходится учитывать также фактор устойчивости решения. Может оказаться так, что оптимальный расчетный план неустойчив: любые, даже незначительные отклонения от него могут привести к резко отрицательным последствиям. И целесообразно будет принять не оптимальный, но зато устойчивый план, отклонения от которого окажутся не столь опасными. (Нетрудно увидеть, что здесь происходит некоторая замена критериев: вместо критерия максимума рассматриваемого показателя вводится критерий надежности плана). · В общей задаче математического программирования вектор инструментальных переменных является точкой глобального О. (решением задачи), если он принадлежит допустимому множеству и целевая функция принимает на этом множестве значение не меньшее (при задаче на максимум) или не большее (при задаче на минимум), чем в любой другой допустимой точке (см. Экстремум функции). Соответственно точкой локального О. является вектор инструментальных переменных, принадлежащий допустимому множеству, на котором значение функции больше (меньше) или равно значениям функции в некоторой малой окрестности этого вектора. Очевидно, что глобальный О. является и локальным, обратное же утверждение было бы неверным. Для функции одной переменной это можно показать на рис. 0.9, где F (x) = y — целевая функция, x — инструментальная переменная. Проверка оптимальности, вытекающая из сказанного: если небольшое передвижение от проверяемой точки сокращает (для задачи максимизации) целевую функцию (функционал), то это — О. Такое правило, однако, относится лишь к выпуклой области допустимых решений. Если она невыпуклая, то данная точка может оказаться лишь локальным О. (см. Градиентные методы). Выделяется два типа оптимальных точек: внутренний и граничный О. (на рис. 0.9 точка x3 — локальный граничный О., точки x1, x2 — внутренние локальные, а x* — внутренний глобальный О.). В первом случае возможно нахождение О. путем дифференцирования функции и приравнивания нулю производной (или частных производных для функции многих переменных). Во втором случае этот метод неприменим (он не применим также в случае, если функция негладкая (см. Гладкая функция). Если оптимальная точка — единственная, то имеем сильный О., в противоположном случае — слабый О. Соответствующие термины применяются как к глобальному (абсолютному), так и к локальному О. См. Глобальный критерий, Народнохозяйственный критерий оптимальности, Оптимальное функционирование экономической системы, Оптимальность по Парето, Принцип оптимальности, Социально-экономический критерий оптимальности. Рис. О.9 Глобальный и локальные оптимумы
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    • optimum, optimality

    Русско-английский словарь нормативно-технической терминологии > оптимум

  • 16 optimum, optimality

    1. оптимум

     

    оптимум
    оптимальность

    С точки зрения математики, оптимум функции есть такое ее экстремальное значение (см. Экстремум функции), которое больше других значений той же функции — тогда это глобальный или, лучше, абсолютный максимум, или меньше других значений — тогда это глобальный (абсолютный) минимум. Если трактовать наибольшее или наименьшее значение каких-то экономических характеристик как наилучшее (в том или ином смысле), то мы придем к фундаментальным понятиям экономико-математических методов — понятиям оптимума и оптимальности. Термин «оптимум» употребляется по меньшей мере в трех значениях: 1) наилучший вариант из возможных состояний системы — его ищут, «решая задачи на О.»; 2) наилучшее направление изменений (поведения) системы («выйти на О.»); 3) цель развития, когда говорят о «достижении О.». Термин «оптимальность», «оптимальный» означает характеристику качества принимаемых решений (оптимальное решение задачи, оптимальный план, оптимальное управление), характеристику состояния системы или ее поведения (оптимальная траектория, оптимальное распределение ресурсов, оптимальное функционирование системы) и т.п. Это не абсолютные понятия: нельзя говорить об оптимальности вообще, вне условий и без точно определенных критериев оптимальности. Решение, наилучшее в одних условиях и с точки зрения одного критерия, может оказаться далеко не лучшим в других условиях и по другому критерию. К тому же следует оговориться, что в реальной экономике, поскольку она носит вероятностный характер, оптимальное решение на самом деле не обязательно наилучшее. Приходится учитывать также фактор устойчивости решения. Может оказаться так, что оптимальный расчетный план неустойчив: любые, даже незначительные отклонения от него могут привести к резко отрицательным последствиям. И целесообразно будет принять не оптимальный, но зато устойчивый план, отклонения от которого окажутся не столь опасными. (Нетрудно увидеть, что здесь происходит некоторая замена критериев: вместо критерия максимума рассматриваемого показателя вводится критерий надежности плана). · В общей задаче математического программирования вектор инструментальных переменных является точкой глобального О. (решением задачи), если он принадлежит допустимому множеству и целевая функция принимает на этом множестве значение не меньшее (при задаче на максимум) или не большее (при задаче на минимум), чем в любой другой допустимой точке (см. Экстремум функции). Соответственно точкой локального О. является вектор инструментальных переменных, принадлежащий допустимому множеству, на котором значение функции больше (меньше) или равно значениям функции в некоторой малой окрестности этого вектора. Очевидно, что глобальный О. является и локальным, обратное же утверждение было бы неверным. Для функции одной переменной это можно показать на рис. 0.9, где F (x) = y — целевая функция, x — инструментальная переменная. Проверка оптимальности, вытекающая из сказанного: если небольшое передвижение от проверяемой точки сокращает (для задачи максимизации) целевую функцию (функционал), то это — О. Такое правило, однако, относится лишь к выпуклой области допустимых решений. Если она невыпуклая, то данная точка может оказаться лишь локальным О. (см. Градиентные методы). Выделяется два типа оптимальных точек: внутренний и граничный О. (на рис. 0.9 точка x3 — локальный граничный О., точки x1, x2 — внутренние локальные, а x* — внутренний глобальный О.). В первом случае возможно нахождение О. путем дифференцирования функции и приравнивания нулю производной (или частных производных для функции многих переменных). Во втором случае этот метод неприменим (он не применим также в случае, если функция негладкая (см. Гладкая функция). Если оптимальная точка — единственная, то имеем сильный О., в противоположном случае — слабый О. Соответствующие термины применяются как к глобальному (абсолютному), так и к локальному О. См. Глобальный критерий, Народнохозяйственный критерий оптимальности, Оптимальное функционирование экономической системы, Оптимальность по Парето, Принцип оптимальности, Социально-экономический критерий оптимальности. Рис. О.9 Глобальный и локальные оптимумы
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    • optimum, optimality

    Англо-русский словарь нормативно-технической терминологии > optimum, optimality

См. также в других словарях:

  • метод максимального правдоподобия — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] метод максимального правдоподобия В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия… …   Справочник технического переводчика

  • Метод максимального правдоподобия — [maximum likeli­hood technique] в математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих… …   Экономико-математический словарь

  • Метод максимального правдоподобия — или метод наибольшего правдоподобия (ММП, ML, MLE  Maximum Likelihood Estimation) в математической статистике  это метод оценивания неизвестного параметра путём максимизации функции правдоподобия[1]. Основан на предположении о том, что… …   Википедия

  • СКАНИРОВАНИЯ МЕТОД — метод максимизации и минимизации функции путем последовательного перебора и сравнения значений функции во всех точках нек рого подмножества допустимого множества. В отличие от перебора методом Монте Карло указанные точки в С. м. лежат на заранее… …   Математическая энциклопедия

  • Кейсианский метод — (Keysiansky method) Содержание Содержание Основные положения концепции экономического развития Дж. М. Кейнса Методологические аспекты экономического учения Дж. М. Кейнса Основные положения Общей теории , и . Практическая программа Дж.М.Кейнса… …   Энциклопедия инвестора

  • Логистическая регрессия — или логит регрессия (англ. logit model)  это статистическая модель, используемая для предсказания вероятности возникновения некоторого события путём подгонки данных к логистической кривой. Содержание 1 Описание 1.1 Подбор параметров …   Википедия

  • ОЦИФРОВКА КАЧЕСТВЕННЫХ ПРИЗНАКОВ — приписывание градациям признаков неких разумных в рамках решаемой задачи количественных значений, называемых метками. Как правило, оцифровка производится с целью дальнейшего использования статистич. методов, рассчитанных на количественные шкалы.… …   Российская социологическая энциклопедия

  • ВЫБОРКА ТЕОРЕТИЧЕСКАЯ — метод формирования выборочной совокупности для исследований случая, применяется также в формировании фокус групп и планировании экспериментов с выделяемыми факторами. В противоположность выборке случайной , репрезентативность В.Т. обосновывается… …   Социология: Энциклопедия

  • Exxon Mobil — (Эксон Мобил) Компания Exxon Mobil самая крупная частная нефтяная компания в мире Деятельность и продукция компании Эксон Мобил, масла и антифризы компании, а так же нефтепродукты, официальный сайт компании Exxon Mobil Содержание >>>>>>>> …   Энциклопедия инвестора

  • Упругая карта — Сравнение нелинейного метода главных многообразий и линейного метода главных компонент (МГК) [1] для визуализации данных генетических чипов по экспрессии генов в раке груди: a) Расположение узлов карты и двумерная главная поверхность,… …   Википедия

  • Реинвестирование — (Reinvestment) Понятие реинвестирования, ставка и коэффициент реинвестирования, реинвестирование прибыли Информация о понятии реинвестирования, ставка и коэффициент реинвестирования, реинвестирование прибыли Содержание Содержания 1. в дивидендной …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»